🧪 t-Test Calculator
Run one-sample, two-sample (pooled or Welch), and paired t-tests. Enter your summary statistics (or paired datasets), choose the alternative hypothesis, and get the test statistic, degrees of freedom, p-value, effect size, and plain-language conclusions.
1. Select t-Test Type
Tail Direction
Significance Level (α)
Custom α must lie between 0.001 and 0.25.
2. Provide Sample Information
t-Test Output
Results readyKey Values
- t statistic
- Degrees of freedom
- p-value
Decision
Critical Region & Effect
- Critical value(s)
- Effect size (Cohen’s \\(d\\))
- Effect interpretation
Step-by-Step Workflow
Formula Reference
One-sample
\\[ t = \dfrac{\bar{x} - \mu_0}{s / \sqrt{n}}, \qquad \text{df} = n - 1 \\]
Pooled two-sample
\\[ t = \dfrac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{s_p \sqrt{\tfrac{1}{n_1} + \tfrac{1}{n_2}}}, \quad s_p^2 = \dfrac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \\]
Welch two-sample
\\[ t = \dfrac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{\tfrac{s_1^2}{n_1} + \tfrac{s_2^2}{n_2}}}, \quad \nu = \dfrac{(s_1^2/n_1 + s_2^2/n_2)^2}{\tfrac{(s_1^2/n_1)^2}{n_1 - 1} + \tfrac{(s_2^2/n_2)^2}{n_2 - 1}} \\]
Paired
\\[ t = \dfrac{\bar{d} - \mu_d}{s_d / \sqrt{n}}, \qquad \text{df} = n - 1 \\]
How to Use This Calculator
- Select the t-test that matches your design (one sample, two independent samples, or paired observations).
- Enter the summary statistics (or paste paired raw data) requested for that test.
- Choose the alternative hypothesis direction and significance level \\(\alpha\\).
- Click “Run t-Test” to compute the test statistic, degrees of freedom, p-value, and effect size.
- Use the decision panel and step-by-step notes to interpret and report the result confidently.
References
- Gossett, W. S. (1908). “The probable error of a mean.” Biometrika, 6(1), 1–25.
- Montgomery, D. C., & Runger, G. C. (2014). Applied Statistics and Probability for Engineers (6th ed.). Wiley.
- Casella, G., & Berger, R. L. (2002). Statistical Inference (2nd ed.). Duxbury.
- Welch, B. L. (1947). “The generalization of Student's problem when several different population variances are involved.” Biometrika, 34(1-2), 28–35.
Disclaimer
Verify assumptions (independent observations, approximate normality for small samples, variance equality for the pooled test) before relying on these inferences. Complement numerical output with diagnostic plots where possible.